Calculation Policy

Multiplication

Progression of Skills	How to do it
Multiplication	Multiplication has 2 structures: - The repeated aggregation structure or repeated addition - The scaling structure associated with scale models and scale drawings
Arrays	Know the difference between fair and unfair Play with commercial arrays (bun trays, egg boxes, yogurt containers, paint trays. Represent numbers in arrays in the playground
Repeated addition	Listen to stories about multiplication Sing songs and listen to rhymes Act out counting out equal sets of objects e.g. socks Recognise that there are more objects as a result of doubling Record activities using objects, pictures, diagrams and mark making Give children routine tasks e.g. put 3 sweets on each plate for our teddies. Model the language Groups of \qquad on each plate
Counting in steps	Count in twos fives and tens: Use fingers to show counting five at a time and two hands to show counting 10 at a time Socks and shoes to show counting in 2 s Repeated Numicon shapes
Doubling	Use practical and visual resources to show doubling. Use vocabulary of double and twice as many (the same again) Build towers Repeated Numicon shapes Counting groups of objects and making another group with the same amount.

THURNBY MEAD
PRIMARY ACADEMY

| Understand
 multiplication as
 scaling | Begin to develop an understanding of scaling (3 times bigger/taller)
 4×3
 3×4 |
| :--- | :--- | :--- |
| Double numbers | |
| Doubling numbers to $10+10$ | |
| Link language of doubling with the language of twice as many | |

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

Linking grid method to formal algorithm (if appropriate and to support children's understanding).	Skills needed: Rounding to the nearest 10 or 100 to estimate calculation Partitioning numbers into 100s 10s and 1s Quick recall of multiplication facts Ability to multiply by 10 or 100 Efficient addition strategy to sum the products 834×8 is approximately $800 \times 8=6400$ 72×38 is approximately $70 \times 40=2800$

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

THURNBY MEAD
PRIMARY ACADEMY

Benefits of Equipment, Models and Images

Bar Model

Girls 3

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving word problems that the bar model represents the problem.

Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, eg. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups.

Number Shapes

Benefits

Number shapes support children's understanding of multiplication as repeated addition.

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapesover the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd $=$ even, odd \times even $=$ odd, even \times even $=$ even.

When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shapethey are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18 .

THURNBY MEAD
PRIMARY ACADEMY

Bead Strings

-000-000-000-000-000-

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 3=5
$$

-00000-00000-00000-
$5 \times 3=15 \quad 15 \div 5=3$
$3 \times 5=15$
$-0000-0000-0000-0000-0000-$

$$
\begin{aligned}
& 4 \times 5=20 \\
& 5 \times 4=20
\end{aligned} \quad 20 \div 4=5
$$

Benefits

Bead strings to 100 can support children in their understanding of multiplication as repeated addition Children can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently.
Encourage children to count in multiples as they build the number e.g. 4, 8, 12, 16, 20.

Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number they are dividing by e.g. 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

THURNBY MEAD
PRIMARY ACADEMY

Number Tracks

$6 \times 3=18$

$$
3 \times 6=18
$$

$$
18 \div 3=6
$$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting.

When multiplying, children place their counter on 0 to start and then count on to find the product of the numbers.
When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

THURNBY MEAD
PRIMARY ACADEMY

Number Lines (labelled)

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications.

When multiplying, childrenstart at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

Number Lines (blank)

A red car travels 3 miles.
A blue car 4 times further.
How far does the blue car travel?

A blue car travels 12 miles.
A red car 4 times less.
How far does the red car travel?

Benefits

Children can use blank number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaling.

THURNBY MEAD
PRIMARY ACADEMY

Base 10/Dienes (multiplication)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2 -digits by 2 -digits.

Place Value Counters (multiplication)

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2digit numbers by 2 -digit numbers.

Times Tables

Skill: 2 times table	Year: 2
\mid \mid \mid \mid \mid \mid \mid \mid \mid $\mid c c c c$ \mid \mid \mid 0 2 4 6 8 10 12 14 16 18 20 22 24 $-\infty-\infty-\infty-\infty-\infty-\infty-\infty-\infty-$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 5 times table	Year: 2
$\begin{array}{lllllllllllllll}- & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60\end{array}$ (8) 00000-00000-00000-00000- 1 2 3 4 (5) 6 7 8 9 10 11 12 13 14 (1) 16 17 18 19 29 21 22 23 24 (2) 26 27 28 29 3 31 32 33 34 3 36 37 38 39 9 41 42 43 44 40 46 47 48 49 9	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

Skill: 10 times table										Year: 2
$90000000000000000000-$										Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0 , and the tens increase by 1 ten each time.
	11	12	13	14	15	16		18	19 (2)	
	21	22	23	24	25	26	27	28	29 (3)	
	31	32	33	34	35	36	37	38	39 (1).	
	${ }^{41}$	42	43	44	45	46	47	48	49 (5)	
,	51	52	53	54	55	56	57	58	59 (10)	
	61	62	63	64	65	66	67	68	69 (1)	
	71	72	73	74	75	76	77	78	79 (3)	
	81	82	83	84	85	86	87	88	89 (9)	
	91	92	93	94	95	96	97	98	99 (-)	

Skill: 3 times table	Year: 3
1 2 3 4 5 6 7 8 9 10 11 (2) 13 14 11 16 17 19 19 20 27 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (3) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -000-000-000-000-000-	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the three times table, using concrete manipulatives to support. Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using a hundred square.

Skill: 6 times table														Year: 4
										7	8		10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
						13	14	15	16	17	(1)	19	20	
					21	23	(2)	25	26	27	28		(3)	
					31	33	34	35	3	37	38	39	40	
						43	44	45	46	47	(17)		50	
					51	53	(3)	55	56	57	58			
6	12	18	24	30	61	63	64	65	66	67	68	69	70	
36	42	48	54	60		73	74	75	76	77	78	79	80	
66	72	78				83	84	85	86	87	88	89	90	
66	72	78	84			93	94	95	96	97	98	99	100	

Skill: 9 times table														Year: 4
00900000000000							34	4	${ }_{5} 6$					Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					1	12	1314	14	15	17	(1)			
						22	23.24	24.2	25.26	(2)	28	29		
						32	3334	34	35 (3)	37	38	39	40	
						424	434	44	(3) 46	47	48			
9	18	27	36	45	51	52	53.	(2) 5	5556	57	58	59	60	
54	63	72	81	90		62	(3) 6	64.65	556	67	68	69		
$-000000000-000000000-000000000-$														

Skill: 11 times tab															Year: 4
11	22	33	44	55	66	1		4	5	6	7	8		10	Encourage
								14	15	16	17	181		20	unting in multiples
77	88	99	110	121	132			24	25	26	27	28		30	
 backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100															

THURNBY MEAD
PRIMARY ACADEMY

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

